Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.878
Filtrar
1.
Sci Rep ; 14(1): 8021, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580710

RESUMO

The Phenome-Wide Association Study (PheWAS) is increasingly used to broadly screen for potential treatment effects, e.g., IL6R variant as a proxy for IL6R antagonists. This approach offers an opportunity to address the limited power in clinical trials to study differential treatment effects across patient subgroups. However, limited methods exist to efficiently test for differences across subgroups in the thousands of multiple comparisons generated as part of a PheWAS. In this study, we developed an approach that maximizes the power to test for heterogeneous genotype-phenotype associations and applied this approach to an IL6R PheWAS among individuals of African (AFR) and European (EUR) ancestries. We identified 29 traits with differences in IL6R variant-phenotype associations, including a lower risk of type 2 diabetes in AFR (OR 0.96) vs EUR (OR 1.0, p-value for heterogeneity = 8.5 × 10-3), and higher white blood cell count (p-value for heterogeneity = 8.5 × 10-131). These data suggest a more salutary effect of IL6R blockade for T2D among individuals of AFR vs EUR ancestry and provide data to inform ongoing clinical trials targeting IL6 for an expanding number of conditions. Moreover, the method to test for heterogeneity of associations can be applied broadly to other large-scale genotype-phenotype screens in diverse populations.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Estudos de Associação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-6/genética
2.
Front Endocrinol (Lausanne) ; 15: 1358311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606083

RESUMO

Background: Increasing evidence indicates that immune response underlies the pathology of type 2 diabetes (T2D). Nevertheless, the specific inflammatory regulators involved in this pathogenesis remain unclear. Methods: We systematically explored circulating inflammatory proteins that are causally associated with T2D via a bidirectional Mendelian randomization (MR) study and further investigated them in prevalent complications of T2D. Genetic instruments for 91 circulating inflammatory proteins were derived from a genome-wide association study (GWAS) that enrolled 14,824 predominantly European participants. Regarding the summary-level GWASs of type 2 diabetes, we adopted the largest meta-analysis of European population (74,124 cases vs. 824,006 controls) and a prospective nested case-cohort study in Europe (9,978 cases vs. 12,348 controls). Summary statistics for five complications of T2D were acquired from the FinnGen R9 repository. The inverse variance-weighted method was applied as the primary method for causal inference. MR-Egger, weighted median and maximum likelihood methods were employed as supplementary analyses. Results from the two T2D studies were combined in a meta-analysis. Sensitivity analyses and phenotype-wide association studies (PheWAS) were performed to detect heterogeneity and potential horizontal pleiotropy in the study. Results: Genetic evidence indicated that elevated levels of TGF-α (OR = 1.16, 95% CI = 1.15-1.17) and CX3CL1 (OR = 1.30, 95% CI = 1.04-1.63) promoted the occurrence of T2D, and increased concentrations of FGF-21 (OR = 0.87, 95% CI = 0.81-0.93) and hGDNF (OR = 0.96, 95% CI = 0.95-0.98) mitigated the risk of developing T2D, while type 2 diabetes did not exert a significant influence on said proteins. Elevated levels of TGF-α were associated with an increased risk of ketoacidosis, neurological complications, and ocular complications in patients with T2D, and increased concentrations of FGF-21 were potentially correlated with a diminished risk of T2D with neurological complications. Higher levels of hGDNF were associated with an increased risk of T2D with peripheral vascular complications, while CX3CL1 did not demonstrate a significant association with T2D complications. Sensitivity analyses and PheWAS further ensure the robustness of our findings. Conclusion: This study determined four circulating inflammatory proteins that affected the occurrence of T2D, providing opportunities for the early prevention and innovative therapy of type 2 diabetes and its complications.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Estudos de Coortes , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Estudos Prospectivos , Fator de Crescimento Transformador alfa
3.
Nat Genet ; 56(4): 579-584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575728

RESUMO

Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Hepatopatias , Adulto , Humanos , Diabetes Mellitus Tipo 2/genética , Proteômica , Obesidade/complicações , Obesidade/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
BMC Cardiovasc Disord ; 24(1): 196, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580915

RESUMO

BACKGROUND: An increasing body of evidence suggests that serum albumin levels play a role in cardiovascular diseases. However, the specific causal relationship between serum albumin levels and cardiovascular disease remains partially unknown. METHODS: Mendelian randomization (MR) was employed in this study to examine potential causal relationships between instrumental variables and cardiovascular diseases. Specifically, we utilized genetic variants of serum albumin levels within the reference range as our instrumental variables. To acquire data on genetic associations with cardiovascular diseases, we sourced information from renowned genome-wide association studies such as UK BioBank, EMBL-EBI, and FinnGen. Notably, our study leveraged summary statistics from large cohorts that have been previously described. RESULTS: We explored the association between serum albumin levels and various conditions, including heart failure (HF), venous thromboembolism (VTE), stroke, atrial fibrillation (AF), coronary artery disease (CAD), type 2 diabetes (T2DM), and pulmonary heart disease (PHD). Genetically predicted serum albumin levels were associated with PHD (odds ratio = 0.737, 95% CI = 0.622 - 0.874, P < 0.001), AF (odds ratio = 0.922, 95% CI = 0.870 - 0.977, P = 0.006), VTE (odds ratio = 0.993, 95% CI = 0.991 - 0.995, P < 0.001), and Stroke (odds ratio = 0.997, 95% CI = 0.995 - 0.999, P = 0.002). However, genetically predicted serum albumin level traits were not associated with HF, CAD and T2DM. CONCLUSION: Our study demonstrates a significant association between serum albumin levels and cardiovascular disease, underscoring the crucial role of low serum albumin as a predictive factor in patients with cardiovascular disease.


Assuntos
Fibrilação Atrial , Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Acidente Vascular Cerebral , Tromboembolia Venosa , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Albumina Sérica , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único
5.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591545

RESUMO

The 'diabetic bone paradox' suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Estudos Prospectivos , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/genética , Fatores de Risco , Osso e Ossos/metabolismo , Estudo de Associação Genômica Ampla
6.
Front Cell Infect Microbiol ; 14: 1327032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596649

RESUMO

Aim: Mendelian randomization (MR) analysis has been used in the exploration of the role of gut microbiota (GM) in type 2 diabetes mellitus (T2DM); however, it was limited to the genus level. This study herein aims to investigate the relationship of GM, especially at the species level, with T2DM in order to provide some evidence for further exploration of more specific GM taxa and pathway abundance in T2DM. Methods: This two-sample MR study was based on the summary statistics of GM from the available genome-wide association study (GWAS) meta-analysis conducted by the MiBioGen consortium as well as the Dutch Microbiome Project (DMP), whereas the summary statistics of T2DM were obtained from the FinnGen consortium released data. Inverse variance weighted (IVW), MR-Egger, strength test (F), and weighted median methods were used to examine the causal association between GM and the onset of T2DM. Cochran's Q statistics was employed to quantify the heterogeneity of instrumental variables. Bonferroni's correction was conducted to correct the bias of multiple testing. We also performed reverse causality analysis. Results: The corrected IVW estimates suggested the increased relative abundance of family Oxalobacteraceae (OR = 1.0704) and genus Oxalobacter (OR = 1.0874), respectively, were associated with higher odds of T2DM, while that of species faecis (OR = 0.9460) had a negative relationship with T2DM. The relationships of class Betaproteobacteria, family Lactobacillaceae, species finegoldii, and species longum with T2DM were also significant according to the IVW results (all P < 0.05). Conclusions: GM had a potential causal association with T2DM, especially species faecis, finegoldii, and longum. Further studies are still needed to clarify certain results that are contradictory with previous findings.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Sulfaleno , Humanos , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana
7.
Lipids Health Dis ; 23(1): 97, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566047

RESUMO

BACKGROUND: Observational studies have suggested an association between birth weight and type 2 diabetes mellitus, but the causality between them has not been established. We aimed to obtain the causal relationship between birth weight with T2DM and quantify the mediating effects of potential modifiable risk factors. METHODS: Two-step, two-sample Mendelian randomization (MR) techniques were applied using SNPs as genetic instruments for exposure and mediators. Summary data from genome-wide association studies (GWAS) for birth weight, T2DM, and a series of fatty acids traits and their ratios were leveraged. The inverse variance weighted (IVW) method was the main analysis approach. In addition, the heterogeneity test, horizontal pleiotropy test, Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test, and leave-one-out analysis were carried out to assess the robustness. RESULTS: The IVW method showed that lower birth weight raised the risk of T2DM (ß: -1.113, 95% CI: -1.573 ∼ -0.652). Two-step MR identified 4 of 17 candidate mediators partially mediating the effect of lower birth weight on T2DM, including ratio of polyunsaturated fatty acids to monounsaturated fatty acids (proportion mediated: 7.9%), ratio of polyunsaturated fatty acids to total fatty acids (7.2%), ratio of omega-6 fatty acids to total fatty acids (8.1%) and ratio of linoleic acid to total fatty acids ratio (6.0%). CONCLUSIONS: Our findings supported a potentially causal effect of birth weight against T2DM with considerable mediation by modifiable risk factors. Interventions that target these factors have the potential to reduce the burden of T2DM attributable to low birth weight.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos , Humanos , Diabetes Mellitus Tipo 2/genética , Peso ao Nascer/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Ácidos Graxos Monoinsaturados
8.
Sci Rep ; 14(1): 8315, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594375

RESUMO

Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease characterized by autoantibodies against insulin producing pancreatic beta cells and initial lack of need for insulin treatment. The aim of the present study was to investigate if individuals with LADA have an altered gut microbiota relative to non-diabetic control subjects, individuals with type 1 diabetes (T1D), and individuals with type 2 diabetes (T2D). Bacterial community profiling was performed with primers targeting the variable region 4 of the 16S rRNA gene and sequenced. Amplicon sequence variants (ASVs) were generated with DADA2 and annotated to the SILVA database. The gut virome was sequenced, using a viral particle enrichment and metagenomics approach, assembled, and quantified to describe the composition of the viral community. Comparison of the bacterial alpha- and beta-diversity measures revealed that the gut bacteriome of individuals with LADA resembled that of individuals with T2D. Yet, specific genera were found to differ in abundance in individuals with LADA compared with T1D and T2D, indicating that LADA has unique taxonomical features. The virome composition reflected the stability of the most dominant order Caudovirales and the families Siphoviridae, Podoviridae, and Inoviridae, and the dominant family Microviridae. Further studies are needed to confirm these findings.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Intolerância à Glucose , Diabetes Autoimune Latente em Adultos , Adulto , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Autoimune Latente em Adultos/genética , Microbioma Gastrointestinal/genética , Adenosina Desaminase , RNA Ribossômico 16S/genética , Peptídeos e Proteínas de Sinalização Intercelular , Insulina
10.
Genome Biol ; 25(1): 98, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627865

RESUMO

BACKGROUND: Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms underlying variant effects in human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. RESULTS: Using a yeast growth-based assay, we score the abundance of 95% of GCK missense and nonsense variants. When combining the abundance scores with our previously determined activity scores, we find that 43% of hypoactive variants also decrease cellular protein abundance. The low-abundance variants are enriched in the large domain, while residues in the small domain are tolerant to mutations with respect to abundance. Instead, many variants in the small domain perturb GCK conformational dynamics which are essential for appropriate activity. CONCLUSIONS: In this study, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Glucoquinase , Humanos , Glucoquinase/genética , Glucoquinase/química , Glucoquinase/metabolismo , Mutação , Substituição de Aminoácidos , Diabetes Mellitus Tipo 2/genética
11.
Yi Chuan ; 46(3): 256-262, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632103

RESUMO

Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor that is crucial for the regulation to maintain the function of pancreatic ß-cell, hepatic lipid metabolism, and other processes. Mature-onset diabetes of the young type 3 is a monogenic form of diabetes caused by HNF1α mutations. Although several mutation sites have been reported, the specific mechanisms remain unclear, such hot-spot mutation as the P291fsinsC mutation and the P112L mutation and so on. In preliminary studies, we discovered one MODY3 patient carrying a mutation at the c.493T>C locus of the HNF1α gene. In this study, we analyzed the pathogenic of the mutation sites by using the Mutation Surveyor software and constructed the eukaryotic expression plasmids of the wild-type and mutant type of HNF1α to detect variations in the expression levels and stability of HNF1α protein by using Western blot. The analyses of the Mutation Surveyor software showed that the c.493T>C site mutation may be pathogenic gene and the results of Western blot showed that both the amount and stability of HNF1α protein expressed by the mutation type plasmid were reduced significantly compared to those by the wild type plasmid (P<0.05). This study suggests that the c.493T>C (p.Trp165Arg) mutation dramatically impacts HNF1α expression, which might be responsible for the development of the disease and offers fresh perspectives for the following in-depth exploration of MODY3's molecular pathogenic process.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Mutação , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/metabolismo
12.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38575156

RESUMO

INTRODUCTION: Diabetic kidney disease (DKD) is a major complication in patients with diabetes and the main contributor to the chronic kidney disease (CKD) global burden. Oxidative stress is a crucial factor in DKD pathogenesis but the role of the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) and its molecular regulators has been poorly investigated in man. RESEARCH DESIGN AND METHODS: In this case-control study, we analyzed the roles of Nrf2, a transcription factor shielding cells from oxidative stress, its repressor Kelch-like ECH-associated protein 1 (Keap1) and six microRNAs (miRNAs) that potentially suppress Nrf2. We categorized 99 participants into 3 groups: 33 non-dialysis patients with type 2 diabetes with DKD, 33 patients with type 2 diabetes without DKD and 33 control subjects and quantified the gene expression (messenger RNA (mRNA)) levels of Nrf2, Keap1 and 6 miRNAs. Moreover, we studied the correlation between gene expression levels and clinical indicators of kidney health. RESULTS: In patients with diabetes with DKD, Nrf2 mRNA levels were significantly lower than in patients without DKD (p=0.01) and controls (p=0.02), whereas no difference in Nrf2 expression levels existed between patients without DKD and controls. Conversely, in patients with and without DKD, Keap1 expression levels were significantly higher than in controls. Of the six miRNAs studied, miRNA 30e-5p showed differential expression, being markedly reduced in patients with DKD (p=0.007). Nrf2 mRNA levels directly correlated with estimated glomerular filtration rate (eGFR) in patients with DKD (r=0.34, p=0.05) and in a formal mediation analysis the eGFR emerged as the first factor in rank for explaining the difference in Nrf2 mRNA levels between patients with and without DKD. CONCLUSIONS: The observed dysregulation in the Nrf2-Keap1 axis and the unique expression pattern of miRNA30e-5p in DKD underscore the need for more focused research in this domain that can help identify novel intervention strategies for DKD in patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/patologia , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/genética
13.
Mol Biol Rep ; 51(1): 481, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578530

RESUMO

BACKGROUND AND AIM: Type 2 diabetes mellitus (T2DM) and depression are often linked. Several studies have reported the role of molecular markers either in diabetes or depression. The present study aimed at molecular level profiling of Indoleamine-2,3-dioxygenase (IDO), brain-derived neurotrophic factor (BDNF) and cellular senescence in patients with type 2 diabetes with and without depression compared to individuals with healthy controls. METHODS: A total of 120 individuals diagnosed with T2DM were enlisted for the study, with a subset of participants with and without exhibiting depression. The gene expression analysis was done using quantitative real-time PCR. RESULTS: Indoleamine 2,3 dioxygenase (p < 0.001) and senescence genes (p < 0.001) were significantly upregulated, while brain derived neurotrophic factor (p < 0.01) was significantly downregulated in T2DM patients comorbid with and without depression when compared to healthy controls. CONCLUSION: Indoleamine 2,3 dioxygenase, Brain derived neurotrophic factor and cellular senescence may play a role in the progression of the disease. The aforementioned discoveries offer significant contributions to our understanding of the molecular mechanisms that underlie T2DM with depression, potentially aiding in the advancement of prediction and diagnostic methods for this particular ailment.


Assuntos
Depressão , Diabetes Mellitus Tipo 2 , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Senescência Celular/genética , Depressão/genética , Depressão/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38575248

RESUMO

Type 2 diabetes mellitus (T2D) is a metabolic disease, which occurs largely due to unhealthy lifestyle. As oxidative stress is believed to promote T2D, by inducing damage to lipids, proteins, and DNA, appropriate dietary interventions seem critical to prevent, manage, and even reverse this condition. Brazil nuts (Bertholletia excelsa, H.B.K.) are nature's richest source of selenium, a mineral that has shown several health benefits. Therefore, this study aims to assess the effects of selenium consumption, through Brazil nuts, on biochemical and oxidative stress parameters, and genomic instability in T2D patients. We recruited 133 patients with T2D, registered in the Integrated Clinics of the University of Southern Santa Catarina (Brazil). Participants consumed one Brazil nut a day for six months. Blood samples and exfoliated buccal cells were collected at the beginning and the end of the intervention. The glycemic profile, lipid profile, renal profile and hepatic profile, DNA damage and selenium content were evaluated. A total of 74 participants completed the intervention. Brazil nut consumption increased selenium and GSH levels, GPx, and CAT activity while DCF and nitrites levels decreased. Total thiols increased, and protein carbonyl and MDA levels decreased. Levels of baseline and oxidative DNA damage in T2D patients were significantly decreased, as well as the frequency of micronuclei and nuclear buds. The fasting glucose levels, HDL and LDL cholesterol, and GGT levels that increased significantly in patients with type 2 diabetes were significantly reduced with nut consumption. Our results show an increase in antioxidant activity, along with reductions of protein and lipid oxidation as well as DNA damage, suggesting that Brazil nut consumption could be an ally in reducing oxidative stress and modulating the genomic instability in T2D patients.


Assuntos
Bertholletia , Diabetes Mellitus Tipo 2 , Selênio , Humanos , Bertholletia/química , Selênio/farmacologia , Sobrepeso , Diabetes Mellitus Tipo 2/genética , Mucosa Bucal , Lipídeos , Dano ao DNA , Instabilidade Genômica
16.
Lipids Health Dis ; 23(1): 84, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509588

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibition is recognized for its evident renoprotective benefits in diabetic renal disease. Recent data suggest that SGLT2 inhibition also slows down kidney disease progression and reduces the risk of acute kidney injury, regardless of whether the patient has diabetes or not, but the mechanism behind these observed effects remains elusive. The objective of this study is to utilize a mendelian randomization (MR) methodology to comprehensively examine the influence of metabolites in circulation regarding the impact of SGLT2 inhibition on kidney function. METHODS: We used a MR study to obtain associations between genetic proxies for SGLT2 inhibition and kidney function. We retrieved the most recent and comprehensive summary statistics from genome-wide association studies (GWAS) that have been previously published and involved kidney function parameters such as estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (UACR), and albuminuria. Additionally, we included blood metabolite data from 249 biomarkers in the UK Biobank for a more comprehensive analysis. We performed MR analyses to explore the causal relationships between SGLT2 inhibition and kidney function and two-step MR to discover potential mediating metabolites. RESULTS: The study found that a decrease in HbA1c levels by one standard deviation, which is genetically expected to result in SGLT2 inhibition, was linked to a decreased likelihood of developing type 2 diabetes mellitus (T2DM) (odds ratio [OR] = 0.55 [95% CI 0.35, 0.85], P = 0.007). Meanwhile, SGLT2 inhibition also protects eGFR (ß = 0.05 [95% CI 0.03, 0.08], P = 2.45 × 10- 5) and decreased UACR (-0.18 [95% CI -0.33, -0.02], P = 0.025) and albuminuria (-1.07 [95% CI -1.58, -0.57], P = 3.60 × 10- 5). Furthermore, the study found that of the 249 metabolites present in the blood, only one metabolite, specifically the concentration of small high-density lipoprotein (HDL) particles, was significantly correlated with both SGLT2 inhibition and kidney function. This metabolite was found to play a crucial role in mediating the improvement of renal function through the use of SGLT2 inhibition (ß = 0.01 [95% CI 0.005, 0.018], P = 0.001), with a mediated proportion of 13.33% (95% CI [5.71%, 26.67%], P = 0.020). CONCLUSIONS: The findings of this investigation provide evidence in favor of a genetically anticipated biological linkage between the inhibition of SGLT2, the presence of circulating metabolites, and renal function. The findings demonstrate that the protective effect of SGLT2 inhibition on renal function is mostly mediated by HDL particle concentrations in circulating metabolites. These results offer significant theoretical support for both the preservation of renal function and a better comprehension of the mechanisms underlying SGLT2 inhibition.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Lipoproteínas HDL/genética , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/farmacologia , Albuminúria/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Rim , Taxa de Filtração Glomerular/genética
17.
PLoS One ; 19(3): e0293510, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457457

RESUMO

Mendelian randomization (MR) is an epidemiological framework using genetic variants as instrumental variables (IVs) to examine the causal effect of exposures on outcomes. Statistical methods based on unidirectional MR (UMR) are widely used to estimate the causal effects of exposures on outcomes in observational studies. To estimate the bidirectional causal effects between two phenotypes, investigators have naively applied UMR methods separately in each direction. However, bidirectional causal effects between two phenotypes create a feedback loop that biases the estimation when UMR methods are naively applied. To overcome this limitation, we proposed two novel approaches to estimate bidirectional causal effects using MR: BiRatio and BiLIML, which are extensions of the standard ratio, and limited information maximum likelihood (LIML) methods, respectively. We compared the performance of the two proposed methods with the naive application of UMR methods through extensive simulations of several scenarios involving varying numbers of strong and weak IVs. Our simulation results showed that when multiple strong IVs are used, the proposed methods provided accurate bidirectional causal effect estimation in terms of median absolute bias and relative median absolute bias. Furthermore, compared to the BiRatio method, the BiLIML method provided a more accurate estimation of causal effects when weak IVs were used. Therefore, based on our simulations, we concluded that the BiLIML should be used for bidirectional causal effect estimation. We applied the proposed methods to investigate the potential bidirectional relationship between obesity and diabetes using the data from the Multi-Ethnic Study of Atherosclerosis cohort. We used body mass index (BMI) and fasting glucose (FG) as measures of obesity and type 2 diabetes, respectively. Our results from the BiLIML method revealed the bidirectional causal relationship between BMI and FG in across all racial populations. Specifically, in the White/Caucasian population, a 1 kg/m2 increase in BMI increased FG by 0.70 mg/dL (95% confidence interval [CI]: 0.3517-1.0489; p = 8.43×10-5), and 1 mg/dL increase in FG increased BMI by 0.10 kg/m2 (95% CI: 0.0441-0.1640; p = 6.79×10-4). Our study provides novel findings and quantifies the effect sizes of the bidirectional causal relationship between BMI and FG. However, further studies are needed to understand the biological and functional mechanisms underlying the bidirectional pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/genética , Análise da Randomização Mendeliana , Obesidade/genética , Jejum , Estudo de Associação Genômica Ampla
18.
Medicine (Baltimore) ; 103(10): e37447, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457558

RESUMO

RATIONALE: Maternally inherited diabetes and deafness (MIDD) is a rare genetic disorder arising from mitochondrial DNA mutations, characterized by a combination of diabetes mellitus and sensorineural deafness. It is known that MIDD patients with cardiomyopathy have a poor prognosis, but there are no established guidelines for the diagnosis and follow-up of cardiomyopathy in MIDD patients. PATIENT CONCERNS: Patient 1 was a 48-year-old woman who visited the hospital with cardiomegaly and had been taking oral hypoglycemic agents for 8 years. Patient 2 was a 21-year-old man, the son of patient 1, who visited the hospital for genetic screening. Patient 2 was also diagnosed diabetes mellitus 2 years ago. DIAGNOSIS: Patient 1 was found to have restrictive cardiomyopathy on echocardiography and underwent endomyocardial biopsy and genetic testing to determine the etiology. The m.3243A>G mutation was confirmed and she was diagnosed with MIDD accompanied with diabetes and hearing loss. Additionally, patient 2 had m.3243 A>G mutation and was diagnosed with MIDD due to diabetes and hearing loss. INTERVENTIONS: Because MIDD does not have a specific treatment, patient 1 took ubidecarenone (coenzyme Q10), acetylcarnitine, and multivitamin along with the treatment for diabetes control and heart failure. Patient 2 was taking ubidecarenone (coenzyme Q10), acetylcarnitine, and multivitamin along with treatment for diabetes. OUTCOMES: She subsequently underwent routine transthoracic echocardiography, and a progressive decline in global longitudinal strain (GLS) was first observed, followed by a worsening of the patient's clinical situation. Patient 2 had concentric remodeling and decreased GLS. On periodic echocardiography, GLS decreased at a very slow rate, and the patient's clinical course was stable. LESSONS: The findings of this report contribute to the understanding of the clinical course of MIDD-associated cardiomyopathy and highlight the potential of GLS as a sensitive marker for disease progression.


Assuntos
Cardiomiopatias , Surdez , Diabetes Mellitus Tipo 2 , Perda Auditiva Neurossensorial , Perda Auditiva , Doenças Mitocondriais , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Adulto , Deformação Longitudinal Global , Acetilcarnitina , Mutação Puntual , Surdez/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Perda Auditiva Neurossensorial/complicações , Perda Auditiva/complicações , Cardiomiopatias/complicações , Progressão da Doença , DNA Mitocondrial/genética
19.
Bull Exp Biol Med ; 176(4): 481-485, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38492104

RESUMO

We performed complex analysis of the association of polymorphic variants rs7903146 of the TCF7L2 gene and rs1801282 of the PPARG gene with metabolic parameters, insulin resistance, and ß-cell function in a group of patients with early signs of carbohydrate metabolism disturbances in a sample of Tyumen citizens. The study group consisted of 64 people (39 women, 25 men) aged 40-70 years. The distribution of frequencies of alleles and genotypes of the polymorphic markers rs7903146 and rs1801282 was analyzed and associations of carriage of major homozygous polymorphisms with various phenotypic traits were identified. Genotyping for polymorphic variants of TCF7L2 and PPARG genes was performed using allele-specific PCR with primers provided by Synthol company. Carriers of homozygotes for allele C of the polymorphic marker rs7903146 significantly differed from other respondents by a higher level of C-peptide, as well as by the presence of associations with waist circumference, elevated level of glycated hemoglobin, and arterial hypertension. Carriers of homozygotes for the allele C of the rs1801282 polymorphism of the PPARG gene differed from the group of carriers of homozygotes for the allele G and the group of heterozygote carriers by higher levels of triglycerides, as well as the presence of associations with waist circumference and the level of glycated hemoglobin.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR gama , Proteína 2 Semelhante ao Fator 7 de Transcrição , Feminino , Humanos , Masculino , Metabolismo dos Carboidratos , Diabetes Mellitus Tipo 2/genética , Genótipo , Hemoglobinas Glicadas/genética , Polimorfismo Genético/genética , Polimorfismo de Nucleotídeo Único/genética , PPAR gama/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
20.
J Am Heart Assoc ; 13(6): e031732, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38497484

RESUMO

BACKGROUND: The relevance of iron status biomarkers for coronary artery disease (CAD), heart failure (HF), ischemic stroke (IS), and type 2 diabetes (T2D) is uncertain. We compared the observational and Mendelian randomization (MR) analyses of iron status biomarkers and hemoglobin with these diseases. METHODS AND RESULTS: Observational analyses of hemoglobin were compared with genetically predicted hemoglobin with cardiovascular diseases and diabetes in the UK Biobank. Iron biomarkers included transferrin saturation, serum iron, ferritin, and total iron binding capacity. MR analyses assessed associations with CAD (CARDIOGRAMplusC4D [Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus The Coronary Artery Disease Genetics], n=181 522 cases), HF (HERMES [Heart Failure Molecular Epidemiology for Therapeutic Targets), n=115 150 cases), IS (GIGASTROKE, n=62 100 cases), and T2D (DIAMANTE [Diabetes Meta-Analysis of Trans-Ethnic Association Studies], n=80 154 cases) genome-wide consortia. Observational analyses demonstrated J-shaped associations of hemoglobin with CAD, HF, IS, and T2D. In contrast, MR analyses demonstrated linear positive associations of higher genetically predicted hemoglobin levels with 8% higher risk per 1 SD higher hemoglobin for CAD, 10% to 13% for diabetes, but not with IS or HF in UK Biobank. Bidirectional MR analyses confirmed the causal relevance of iron biomarkers for hemoglobin. Further MR analyses in global consortia demonstrated modest protective effects of iron biomarkers for CAD (7%-14% lower risk for 1 SD higher levels of iron biomarkers), adverse effects for T2D, but no associations with IS or HF. CONCLUSIONS: Higher levels of iron biomarkers were protective for CAD, had adverse effects on T2D, but had no effects on IS or HF. Randomized trials are now required to assess effects of iron supplements on risk of CAD in high-risk older people.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , AVC Isquêmico , Acidente Vascular Cerebral , Adulto , Humanos , Idoso , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Ferro , Fatores de Risco , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla/métodos , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética , Biomarcadores , Hemoglobinas , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...